论文标题

DWR型的可靠性和效率A后验错误估计,智能敏感性重量恢复

Reliability and efficiency of DWR-type a posteriori error estimates with smart sensitivity weight recovering

论文作者

Endtmayer, Bernhard, Langer, Ulrich, Wick, Thomas

论文摘要

我们得出了有效且可靠的面向目标误差估计,并根据后验估计的定位设计有限元方法的自适应网格程序。在我们以前的作品中[Siam J. Sci。 Comput。,42(1),A371 - A394,2020],我们根据富含有限元空间的误差估计器显示出效率和可靠性。但是,在丰富的有限元空间上解决问题的解决方案很昂贵。在文献中,众所周知,人们可以使用一些高阶插值来克服这种瓶颈。使用饱和假设,我们将效率和可靠性的证明扩展到了这样的高阶插值。结果可用于创建一个新的算法系列,其中其中一个在三个数值示例(泊松问题,p-laplace方程,navier-stokes benschmark)上进行了测试,并与我们以前的算法进行了比较。

We derive efficient and reliable goal-oriented error estimations, and devise adaptive mesh procedures for the finite element method that are based on the localization of a posteriori estimates. In our previous work [SIAM J. Sci. Comput., 42(1), A371--A394, 2020], we showed efficiency and reliability for error estimators based on enriched finite element spaces. However, the solution of problems on a enriched finite element space is expensive. In the literature, it is well known that one can use some higher-order interpolation to overcome this bottleneck. Using a saturation assumption, we extend the proofs of efficiency and reliability to such higher-order interpolations. The results can be used to create a new family of algorithms, where one of them is tested on three numerical examples (Poisson problem, p-Laplace equation, Navier-Stokes benschmark), and is compared to our previous algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源