论文标题
组合量化中的载体和(陈述)绞线代数
Holonomy and (stated) skein algebras in combinatorial quantization
论文作者
论文摘要
代数$ \ MATHCAL {L} _ {G,N}(H)$由Alekseev-Grosse-Schomerus和Buffenoir-Roche介绍,并量化了Riemann Surface $σ_{G,N} \!\!\!\!\ setMinus \! D $($ D $是一个开放式磁盘)。在本文中,我们在该量化的设置中定义了一个自动图,该图将张量与$ \ nathcal {l} _ {l} _ {g,n}(h)$相关联,以$(σ_{g,n} \!\!\!\!\!\! Bullock-Frohman-Kania-Bartoszynska。我们表明,整体对堆栈产品和映射类组的作用都很好。然后,我们将此概念专门用于链接,以定义广义的Wilson Loop地图。多亏了整体映射,我们对$ \ Mathcal {l} _ {g,0}(h)$的真空表示形式提供了几何解释。最后,将一般结果应用于$ h = u_ {q^2}(\ m athfrak {sl} _2)$与skein理论有关,最重要的结果是,与一个边界边缘相关表面的陈述的绞线代数与$ \ nathcal isomorphic to Insomorphic to $ \ \ m nathcal cal cal cal cal calcal risomorphic to Isomorphic to u_ {q^2}(\ Mathfrak {sl} _2)\ big)$。在整篇文章中,我们使用图形微积分来用于$ \ Mathcal {l} _ {g,n}(h)$中的系数的张量,这使得计算和定义非常直观。
The algebra $\mathcal{L}_{g,n}(H)$ was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and quantizes the character variety of the Riemann surface $Σ_{g,n}\!\setminus\! D$ ($D$ is an open disk). In this article we define a holonomy map in that quantized setting, which associates a tensor with components in $\mathcal{L}_{g,n}(H)$ to tangles in $(Σ_{g,n}\!\setminus\!D) \times [0,1]$, generalizing previous works of Buffenoir-Roche and Bullock-Frohman-Kania-Bartoszynska. We show that holonomy behaves well for the stack product and the action of the mapping class group; then we specialize this notion to links in order to define a generalized Wilson loop map. Thanks to the holonomy map, we give a geometric interpretation of the vacuum representation of $\mathcal{L}_{g,0}(H)$ on $\mathcal{L}_{0,g}(H)$. Finally, the general results are applied to the case $H=U_{q^2}(\mathfrak{sl}_2)$ in relation to skein theory and the most important consequence is that the stated skein algebra of a compact oriented surface with just one boundary edge is isomorphic to $\mathcal{L}_{g,n}\big( U_{q^2}(\mathfrak{sl}_2) \big)$. Throughout the paper we use a graphical calculus for tensors with coefficients in $\mathcal{L}_{g,n}(H)$ which makes the computations and definitions very intuitive.