论文标题

量子流体动力学中的载体和涡流结构

Holonomy and vortex structures in quantum hydrodynamics

论文作者

Foskett, Michael S., Tronci, Cesare

论文摘要

我们根据仪表连接理论考虑了Madelung量子流体动力学(QHD)的新几何方法。特别是,我们的处理包括一个恒定的曲率,从而使QHD具有固有的非零全体性。在流体动力的环境中,这导致流体速度不再被限制为无关,而是允许涡流丝解决方案。在利用rasetti-regge方法将schrödinger方程与涡流动力学息息后,后者被视为在Born-Oppenheimer分子动力学背景下的几何阶段的来源。同样,我们考虑了电磁场中自旋颗粒运动的Pauli方程,并利用其潜在的流体动力学图片来包括涡流动力学。

We consider a new geometric approach to Madelung's quantum hydrodynamics (QHD) based on the theory of gauge connections. In particular, our treatment comprises a constant curvature thereby endowing QHD with intrinsic non-zero holonomy. In the hydrodynamic context, this leads to a fluid velocity which no longer is constrained to be irrotational and allows instead for vortex filaments solutions. After exploiting the Rasetti-Regge method to couple the Schrödinger equation to vortex filament dynamics, the latter is then considered as a source of geometric phase in the context of Born-Oppenheimer molecular dynamics. Similarly, we consider the Pauli equation for the motion of spin particles in electromagnetic fields and we exploit its underlying hydrodynamic picture to include vortex dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源