论文标题

最大$ l_p $ - $ l_q $ Quarrofity for Quasi steady Elliptic问题

Maximal $L_p$-$L_q$ regularity for the Quasi-Steady Elliptic Problems

论文作者

Furukawa, Ken, Kajiwara, Naoto

论文摘要

在本文中,我们考虑了矢量值准稳态线性椭圆问题的最大规律性。方程是域中的椭圆方程,其边界上的进化方程。我们证明了这些问题的最大$ L_P $ - $ L_Q $规律性,并举例说明我们的结果适用。 Lopatinskii-shapiro和渐近lopatinskii-shapiro条件对于获得溶液操作员的界限很重要。

In this paper we consider maximal regularity for the vector-valued quasi-steady linear elliptic problems. The equations are the elliptic equation in the domain and the evolution equations on its boundary. We prove the maximal $L_p$-$L_q$ regularity for these problems and give examples that our results are applicable. The Lopatinskii--Shapiro and the asymptotic Lopatinskii--Shapiro conditions are important to get boundedness of solution operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源