论文标题
材料科学科学AI:通往可持续可扩展范式的途径
Scientific AI in materials science: a path to a sustainable and scalable paradigm
论文作者
论文摘要
最近,通过材料科学,凝结物理学和化学界的机器学习(ML)和人工智能(AI)方法,使用机器学习(ML)和人工智能(AI)方法一直存在不断增长的趋势。这篇观点文章确定了材料社区必须优先考虑并利用科学AI的关键科学,技术和社会机会,以提供一条可靠的途径,以促进当前材料有限的技术的发展。在这里,我们强调了这些机会与一系列提议的道路的交集。机会大致从科学/技术(例如,发展强大的,身体有意义的多尺度表示)到社会(例如,促进AI-Ready Ready劳动力)进行了分类。拟议的途径范围从开发新的基础设施和能力到行业和学术界部署。我们简要介绍了材料科学和工程学中的AI,然后详细讨论了前进的每个机会和道路。
Recently there has been an ever-increasing trend in the use of machine learning (ML) and artificial intelligence (AI) methods by the materials science, condensed matter physics, and chemistry communities. This perspective article identifies key scientific, technical, and social opportunities that the materials community must prioritize to consistently develop and leverage Scientific AI to provide a credible path towards the advancement of current materials-limited technologies. Here we highlight the intersections of these opportunities with a series of proposed paths forward. The opportunities are roughly sorted from scientific/technical (e.g., development of robust, physically meaningful multiscale material representations) to social (e.g., promoting an AI-ready workforce). The proposed paths forward range from developing new infrastructure and capabilities to deploying them in industry and academia. We provide a brief introduction to AI in materials science and engineering, followed by detailed discussions of each of the opportunities and paths forward.