论文标题

神经模糊提取器:使用人工神经网络进行生物识别用户身份验证的安全方法

Neural Fuzzy Extractors: A Secure Way to Use Artificial Neural Networks for Biometric User Authentication

论文作者

Jana, Abhishek, Paudel, Bipin, Sarker, Md Kamruzzaman, Ebrahimi, Monireh, Hitzler, Pascal, Amariucai, George T

论文摘要

在传感器开发和人工智能方面的新进展,计算成本下降以及手持计算设备的普遍性的支持下,生物识别用户身份验证(和识别)迅速变得无处不在。基于复杂的机器学习技术的现代生物识别验证方法无法避免存储训练有素的分类器详细信息或显式用户生物识别数据,从而使用户的凭据暴露于伪造。在本文中,我们引入了一种安全的方法,以处理与使用矢量空间分类器或人工神经网络进行生物识别认证有关的用户特定信息。我们提出的称为神经模糊提取器(NFE)的结构允许通过人工神经网络的缓冲液(称为An Expander)将预先存在的分类器与模糊提取器耦合,具有最小或没有性能降级。因此,NFE提供了现代基于深度学习的分类器的所有性能优势,以及标准模糊提取器的所有安全性。我们将NFE改造为经典的人工神经网络,以实现基于指纹的用户身份验证的简单场景。

Powered by new advances in sensor development and artificial intelligence, the decreasing cost of computation, and the pervasiveness of handheld computation devices, biometric user authentication (and identification) is rapidly becoming ubiquitous. Modern approaches to biometric authentication, based on sophisticated machine learning techniques, cannot avoid storing either trained-classifier details or explicit user biometric data, thus exposing users' credentials to falsification. In this paper, we introduce a secure way to handle user-specific information involved with the use of vector-space classifiers or artificial neural networks for biometric authentication. Our proposed architecture, called a Neural Fuzzy Extractor (NFE), allows the coupling of pre-existing classifiers with fuzzy extractors, through a artificial-neural-network-based buffer called an expander, with minimal or no performance degradation. The NFE thus offers all the performance advantages of modern deep-learning-based classifiers, and all the security of standard fuzzy extractors. We demonstrate the NFE retrofit to a classic artificial neural network for a simple scenario of fingerprint-based user authentication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源