论文标题

图像样式传输的内容转换块

A Content Transformation Block For Image Style Transfer

论文作者

Kotovenko, Dmytro, Sanakoyeu, Artsiom, Ma, Pingchuan, Lang, Sabine, Ommer, Björn

论文摘要

样式转移最近引起了很多关注,因为它允许研究图像理解和综合方面的基本挑战。最近的工作大大改善了颜色,纹理以及计算速度和图像分辨率的表示。但是,图像内容的明确转换已被忽略了:虽然艺术风格会影响图像的形式特征,例如颜色,形状或纹理,但它也会变形,添加或删除内容细节。本文明确侧重于内容图像的内容和样式风格。因此,我们在编码器和解码器之间介绍了一个内容转换模块。此外,我们利用照片和样式样本中出现的类似内容来了解​​样式如何改变内容详细信息,并将其推广到其他类详细信息。此外,这项工作提出了一个对高分辨率图像合成至关重要的新型归一化层。我们模型的鲁棒性和速度可以实时和高清视频风格化。我们进行广泛的定性和定量评估,以证明我们方法的有效性。

Style transfer has recently received a lot of attention, since it allows to study fundamental challenges in image understanding and synthesis. Recent work has significantly improved the representation of color and texture and computational speed and image resolution. The explicit transformation of image content has, however, been mostly neglected: while artistic style affects formal characteristics of an image, such as color, shape or texture, it also deforms, adds or removes content details. This paper explicitly focuses on a content-and style-aware stylization of a content image. Therefore, we introduce a content transformation module between the encoder and decoder. Moreover, we utilize similar content appearing in photographs and style samples to learn how style alters content details and we generalize this to other class details. Additionally, this work presents a novel normalization layer critical for high resolution image synthesis. The robustness and speed of our model enables a video stylization in real-time and high definition. We perform extensive qualitative and quantitative evaluations to demonstrate the validity of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源