论文标题
在$ \ bf {d = 2+1} $中探索哈密顿的截断
Exploring Hamiltonian Truncation in $\bf{d=2+1}$
论文作者
论文摘要
我们启动了哈密顿截断方法的应用,以在$ d = 2+1 $中求解强烈耦合的QFT。通过使用哈密顿截断调节器分析扰动理论,我们指出了这种方法的挑战,并提出了可以解决这些方法的方法。这使我们能够以$ d = 2+1 $中的$ ϕ^4 $制定哈密顿截断理论,并以弱和强耦合研究其频谱。获得的结果与该理论所拥有的弱/强偶联性的预测非常吻合。 $ ϕ^4 $相互作用是非常相关的紫外线分歧扰动,代表了更一般情况的案例研究。因此,开发的方法应适用于许多其他感兴趣的QFT。
We initiate the application of Hamiltonian Truncation methods to solve strongly coupled QFTs in $d=2+1$. By analysing perturbation theory with a Hamiltonian Truncation regulator, we pinpoint the challenges of such an approach and propose a way that these can be addressed. This enables us to formulate Hamiltonian Truncation theory for $ϕ^4$ in $d=2+1$, and to study its spectrum at weak and strong coupling. The results obtained agree well with the predictions of a weak/strong self-duality possessed by the theory. The $ϕ^4$ interaction is a strongly relevant UV divergent perturbation, and represents a case study of a more general scenario. Thus, the approach developed should be applicable to many other QFTs of interest.