论文标题

基于视觉的自主驾驶:一种模型学习方法

Vision-Based Autonomous Driving: A Model Learning Approach

论文作者

Baheri, Ali, Kolmanovsky, Ilya, Girard, Anouck, Tseng, H. Eric, Filev, Dimitar

论文摘要

我们提出了一种对自动驾驶汽车的感知和控制的综合方法,并在高保真的城市驾驶模拟器中证明了这种方法。我们的方法首先为环境建立了一个模型,然后训练一项策略利用学习模型,以确定每个时间步骤采取的动作。为了为环境建立模型,我们利用了几种深度学习算法。为此,首先,我们训练一个差异自动编码器将输入图像编码为抽象的潜在表示。然后,我们利用复发性神经网络来预测下一帧的潜在表示并处理时间信息。最后,我们利用基于进化的增强学习算法来训练基于这些潜在表示的控制器,以确定要采取的动作。我们评估了高保真城市驾驶模拟器Carla的方法,并进行了广泛的概括研究。我们的结果表明,我们的方法在成功完成任务的成功完成的情节的百分比方面优于先前报道的方法。

We present an integrated approach for perception and control for an autonomous vehicle and demonstrate this approach in a high-fidelity urban driving simulator. Our approach first builds a model for the environment, then trains a policy exploiting the learned model to identify the action to take at each time-step. To build a model for the environment, we leverage several deep learning algorithms. To that end, first we train a variational autoencoder to encode the input image into an abstract latent representation. We then utilize a recurrent neural network to predict the latent representation of the next frame and handle temporal information. Finally, we utilize an evolutionary-based reinforcement learning algorithm to train a controller based on these latent representations to identify the action to take. We evaluate our approach in CARLA, a high-fidelity urban driving simulator, and conduct an extensive generalization study. Our results demonstrate that our approach outperforms several previously reported approaches in terms of the percentage of successfully completed episodes for a lane keeping task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源