论文标题

一种基于人工智能的系统,用于评估住院患者的养分摄入量

An Artificial Intelligence-Based System to Assess Nutrient Intake for Hospitalised Patients

论文作者

Lu, Ya, Stathopoulou, Thomai, Vasiloglou, Maria F., Christodoulidis, Stergios, Stanga, Zeno, Mougiakakou, Stavroula

论文摘要

定期监测住院患者的养分摄入量在降低与疾病相关营养不良的风险方面起着至关重要的作用。尽管已经开发了几种估计营养摄入量的方法,但仍然有明确的需求对一种更可靠和完全自动化的技术,因为这可以提高数据准确性并减轻参与者的负担和健康成本。在本文中,我们提出了一个基于人工智能(AI)的新型系统,以通过简单地处理RGB深度(RGB-D)图像对来准确估算营养摄入量,从而在食用餐食之前和之后捕获。该系统包括用于食品分割的新型多任务上下文网络,由有限的培训样品构建的基于学习的基于学习的分类器,以及用于3D表面构造的算法。这允许对食用食物量的顺序分割,识别和估计,从而可以全自自动估计每顿饭的养分摄入量。为了开发和评估系统,组装了一个专用的新数据库,其中包含322餐的图像和营养食谱,并使用创新策略结合数据注释。实验结果表明,估计的营养摄入与地面真相高度相关(> 0.91),并且显示出非常小的平均相对误差(<20%),表现优于提出的用于营养摄入量评估的现有技术。

Regular monitoring of nutrient intake in hospitalised patients plays a critical role in reducing the risk of disease-related malnutrition. Although several methods to estimate nutrient intake have been developed, there is still a clear demand for a more reliable and fully automated technique, as this could improve data accuracy and reduce both the burden on participants and health costs. In this paper, we propose a novel system based on artificial intelligence (AI) to accurately estimate nutrient intake, by simply processing RGB Depth (RGB-D) image pairs captured before and after meal consumption. The system includes a novel multi-task contextual network for food segmentation, a few-shot learning-based classifier built by limited training samples for food recognition, and an algorithm for 3D surface construction. This allows sequential food segmentation, recognition, and estimation of the consumed food volume, permitting fully automatic estimation of the nutrient intake for each meal. For the development and evaluation of the system, a dedicated new database containing images and nutrient recipes of 322 meals is assembled, coupled to data annotation using innovative strategies. Experimental results demonstrate that the estimated nutrient intake is highly correlated (> 0.91) to the ground truth and shows very small mean relative errors (< 20%), outperforming existing techniques proposed for nutrient intake assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源