论文标题
LRC-NET:通过编码局部区域上下文来学习点云上的判别特征
LRC-Net: Learning Discriminative Features on Point Clouds by Encoding Local Region Contexts
论文作者
论文摘要
直接在点云上学习判别特征在理解3D形状方面仍然具有挑战性。最近的方法通常通常将云划分为局部区域集,然后以固定大小的CNN或MLP提取局部区域特征,最后将所有单个局部特征汇总到使用简单的最大池化中。但是,由于采样点云的不规则性和稀疏性,仅当仅使用固定尺寸过滤器和单个局部特征集成时,就很难编码本地区域及其空间关系的细粒几何形状及其空间关系,这限制了学习歧视性特征的能力。为了解决这个问题,我们提出了一个新颖的本地区域 - 替代网络(LRC-NET),以同时在本地区域内和本地区域之间编码细粒度的上下文来学习点云上的区分特征。 LRC-NET由两个主要模块组成。第一个模块,名为“区域内上下文编码”,旨在通过新颖的可变大小卷积滤波器捕获每个局部区域内部的几何相关性。提出了第二个模块,称为区域间环境编码,是为基于空间相似性度量的局部区域之间整合空间关系的建议。实验结果表明,LRC-NET与形状分类和形状分割应用中的最新方法具有竞争力。
Learning discriminative feature directly on point clouds is still challenging in the understanding of 3D shapes. Recent methods usually partition point clouds into local region sets, and then extract the local region features with fixed-size CNN or MLP, and finally aggregate all individual local features into a global feature using simple max pooling. However, due to the irregularity and sparsity in sampled point clouds, it is hard to encode the fine-grained geometry of local regions and their spatial relationships when only using the fixed-size filters and individual local feature integration, which limit the ability to learn discriminative features. To address this issue, we present a novel Local-Region-Context Network (LRC-Net), to learn discriminative features on point clouds by encoding the fine-grained contexts inside and among local regions simultaneously. LRC-Net consists of two main modules. The first module, named intra-region context encoding, is designed for capturing the geometric correlation inside each local region by novel variable-size convolution filter. The second module, named inter-region context encoding, is proposed for integrating the spatial relationships among local regions based on spatial similarity measures. Experimental results show that LRC-Net is competitive with state-of-the-art methods in shape classification and shape segmentation applications.