论文标题

一种具有基线相关性的新型Twitter情感分析模型,用于金融市场预测,并提高效率

A Novel Twitter Sentiment Analysis Model with Baseline Correlation for Financial Market Prediction with Improved Efficiency

论文作者

Guo, Xinyi, Li, Jinfeng

论文摘要

与基于封闭式基金折扣(CEFD)的常规计量经济学模型相比,基于Twitter情绪评分(TSS)提出了一种新颖的社交网络情感分析模型,以实时预测未来股票市场价格FTSE 100的实时预测。拟议的TSS模型采用了一种新的基线相关方法,该方法不仅表现出不错的预测准确性,而且还减轻了计算负担,并在没有历史数据的情况下实现了快速的决策。多项式回归,分类建模和基于词典的情感分析是使用R进行的。所获得的TSS预测未来的股票市场趋势会提前15个时间样本(30个工作小时),精度为67.22%,使用拟议的基线标准,而无需参考历史TSS或市场数据。具体而言,发现TSS对向上市场的预测性能远胜于下降市场。在逻辑回归和线性判别分析下,TSS在预测未来市场的上升趋势方面的准确性达到97.87%。

A novel social networks sentiment analysis model is proposed based on Twitter sentiment score (TSS) for real-time prediction of the future stock market price FTSE 100, as compared with conventional econometric models of investor sentiment based on closed-end fund discount (CEFD). The proposed TSS model features a new baseline correlation approach, which not only exhibits a decent prediction accuracy, but also reduces the computation burden and enables a fast decision making without the knowledge of historical data. Polynomial regression, classification modelling and lexicon-based sentiment analysis are performed using R. The obtained TSS predicts the future stock market trend in advance by 15 time samples (30 working hours) with an accuracy of 67.22% using the proposed baseline criterion without referring to historical TSS or market data. Specifically, TSS's prediction performance of an upward market is found far better than that of a downward market. Under the logistic regression and linear discriminant analysis, the accuracy of TSS in predicting the upward trend of the future market achieves 97.87%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源