论文标题
随机步行的角度渐近学
Angular asymptotics for random walks
论文作者
论文摘要
我们研究了一组在$ d $维欧几里得空间中的空间均匀随机行走渐近探索的方向。我们调查了Kesten和Erickson的一些相关结果,进行了一些进一步的观察,并提供了一些例子。我们还探索了与一维预测的渐近学的联系,以及随机步行的凸壳的增长。
We study the set of directions asymptotically explored by a spatially homogeneous random walk in $d$-dimensional Euclidean space. We survey some pertinent results of Kesten and Erickson, make some further observations, and present some examples. We also explore links to the asymptotics of one-dimensional projections, and to the growth of the convex hull of the random walk.