论文标题

通过大规模MIMO通信系统联合学习的一种压缩感应方法

A Compressive Sensing Approach for Federated Learning over Massive MIMO Communication Systems

论文作者

Jeon, Yo-Seb, Amiri, Mohammad Mohammadi, Li, Jun, Poor, H. Vincent

论文摘要

Federated Learning是一种保护隐私的方法,可以通过与无线设备合作,每个人都有自己的本地培训数据集来培训中央服务器的全球模型。在本文中,我们提出了一种通过大量多输入多输出通信系统联合学习的压缩感应方法,其中配备了大型天线阵列的中央服务器与无线设备进行通信。系统设计中的一个主要挑战是在中央服务器上准确地重建本地梯度向量,该阶段是从无线设备计算出来的。为了克服这一挑战,我们首先建立了一种传输策略,以构建设备上局部梯度向量的稀疏传输信号。然后,我们提出了一种压缩传感算法,使服务器能够迭代地找到传输信号的线性最小值 - 均值(LMMSE)估计值,通过利用其稀疏性。我们还得出了每次迭代时残余误差的分析阈值,以设计所提出的算法的停止标准。我们表明,对于稀疏的传输信号,所提出的算法比LMMSE所需的计算复杂性更少。仿真结果表明,提出的方法的表现超过了传统的线性光束形成方法,并通过完美的重建来减少联合学习与集中学习之间的性能差距。

Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices, each with its own local training data set. In this paper, we present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems in which the central server equipped with a massive antenna array communicates with the wireless devices. One major challenge in system design is to reconstruct local gradient vectors accurately at the central server, which are computed-and-sent from the wireless devices. To overcome this challenge, we first establish a transmission strategy to construct sparse transmitted signals from the local gradient vectors at the devices. We then propose a compressive sensing algorithm enabling the server to iteratively find the linear minimum-mean-square-error (LMMSE) estimate of the transmitted signal by exploiting its sparsity. We also derive an analytical threshold for the residual error at each iteration, to design the stopping criterion of the proposed algorithm. We show that for a sparse transmitted signal, the proposed algorithm requires less computationally complexity than LMMSE. Simulation results demonstrate that the presented approach outperforms conventional linear beamforming approaches and reduces the performance gap between federated learning and centralized learning with perfect reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源