论文标题
最大化基于影响力的群体沙普利中心性
Maximizing Influence-based Group Shapley Centrality
论文作者
论文摘要
网络分析中的一个关键问题是所谓的影响最大化问题,其中包括在社交网络中找到最多$ k $ seed用户的集合$ s $,从而最大程度地提高了信息从$ s $中的传播。本文研究了一个相关但略有不同的问题:我们希望在最大的$ k $种子用户中找到最大化信息传播的$ s $,当$ s $添加到已经存在的已经存在的(但未知)的种子用户$ t $时。我们认为这种情况非常现实。假设中央实体希望传播一条新闻,同时有预算影响$ k $的用户。该中央当局可能知道一些用户已经意识到这些信息,并且无论如何都会传播信息。这些用户的身份是完全未知的。我们使用小组Shapley Value对这个优化问题进行建模,这是一个合作游戏理论中有充分根据的概念。尽管在任何$ε> 0 $的因子$ 1-1/e-ε$之内,标准影响最大化问题很容易近似,假设存在常见的计算复杂性猜想,但我们在本文中获得了强大的近似硬度结果。也许最突出的是,我们表明它不能在$ 1/n^{o(1)} $下近似于差距指数时间假设。因此,与多项式因子近似相比,不可能取得更好的成就。尽管如此,我们表明,贪婪的算法可以达到$ \ frac {1-1/e} {k}-ε$的$ \ frac {1-1/e} {k}-ε$,对于任何$ε> 0 $,表明并非所有在$ k $有限的设置中都丢失了。
One key problem in network analysis is the so-called influence maximization problem, which consists in finding a set $S$ of at most $k$ seed users, in a social network, maximizing the spread of information from $S$. This paper studies a related but slightly different problem: We want to find a set $S$ of at most $k$ seed users that maximizes the spread of information, when $S$ is added to an already pre-existing - but unknown - set of seed users $T$. We consider such scenario to be very realistic. Assume a central entity wants to spread a piece of news, while having a budget to influence $k$ users. This central authority may know that some users are already aware of the information and are going to spread it anyhow. The identity of these users being however completely unknown. We model this optimization problem using the Group Shapley value, a well-founded concept from cooperative game theory. While the standard influence maximization problem is easy to approximate within a factor $1-1/e-ε$ for any $ε>0$, assuming common computational complexity conjectures, we obtain strong hardness of approximation results for the problem at hand in this paper. Maybe most prominently, we show that it cannot be approximated within $1/n^{o(1)}$ under the Gap Exponential Time Hypothesis. Hence, it is unlikely to achieve anything better than a polynomial factor approximation. Nevertheless, we show that a greedy algorithm can achieve a factor of $\frac{1-1/e}{k}-ε$ for any $ε>0$, showing that not all is lost in settings where $k$ is bounded.