论文标题

最近的邻居Dirichlet混合物

Nearest Neighbor Dirichlet Mixtures

论文作者

Chattopadhyay, Shounak, Chakraborty, Antik, Dunson, David B.

论文摘要

关于贝叶斯方法的密度估计方法有丰富的文献,将未知密度作为核的混合物进行了特征。这种方法在提供估计的不确定性量化方面具有优势,同时适应了各种各样的密度。但是,相对于局部自适应核法的频繁主义者,贝叶斯方法在依靠马尔可夫链蒙特卡洛算法方面可以缓慢且不稳定。为了保持贝叶斯方法的大多数强度,而没有计算缺点,我们提出了一类最近的邻居迪里奇特混合物。该方法首先根据标准算法将数据分组为邻域。在每个邻域中,密度是通过贝叶斯参数模型(例如具有未知参数的高斯人)来表征的。在这些局部内核上的权重之前分配了一个差异,我们获得了权重和内核参数的伪后验。提出了一种简单且令人尴尬的平行蒙特卡洛算法,以从所得的伪后孔中采样未知密度。显示了理想的渐近特性,并在模拟研究中评估了该方法,并应用于分类背景下的激励数据集。

There is a rich literature on Bayesian methods for density estimation, which characterize the unknown density as a mixture of kernels. Such methods have advantages in terms of providing uncertainty quantification in estimation, while being adaptive to a rich variety of densities. However, relative to frequentist locally adaptive kernel methods, Bayesian approaches can be slow and unstable to implement in relying on Markov chain Monte Carlo algorithms. To maintain most of the strengths of Bayesian approaches without the computational disadvantages, we propose a class of nearest neighbor-Dirichlet mixtures. The approach starts by grouping the data into neighborhoods based on standard algorithms. Within each neighborhood, the density is characterized via a Bayesian parametric model, such as a Gaussian with unknown parameters. Assigning a Dirichlet prior to the weights on these local kernels, we obtain a pseudo-posterior for the weights and kernel parameters. A simple and embarrassingly parallel Monte Carlo algorithm is proposed to sample from the resulting pseudo-posterior for the unknown density. Desirable asymptotic properties are shown, and the methods are evaluated in simulation studies and applied to a motivating data set in the context of classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源