论文标题

$ \ ell_p $ norms in lattices上有界距离解码的硬度

Hardness of Bounded Distance Decoding on Lattices in $\ell_p$ Norms

论文作者

Bennett, Huck, Peikert, Chris

论文摘要

$ \ newCommand {\ Z} {\ MathBb {z}}} \ newCommand {\ eps} {\ varepsilon} \ newcommand {\ cc} [1] \ newCommand {\ Quards} [1] {\ Mathrm {#1}}} \ newCommand {\ bdd} {\ Quargess {bdd}} $有限的距离解码$ \ bdd_ {p,α} $是在目标点承诺在$ \ ell_ {p} $ norm中解码晶格的问题。 We prove that $\BDD_{p, α}$ is $\NP$-hard under randomized reductions where $α\to 1/2$ as $p \to \infty$ (and for $α=1/2$ when $p=\infty$), thereby showing the hardness of decoding for distances approaching the unique-decoding radius for large $p$.我们还显示了$ \ bdd_ {p,α} $的细粒硬度。例如,我们证明,对于[1,\ infty)\ setMinus 2 \ z $和常数$ c> 1,\ eps> 0 $,没有$ 2^{(1- \ eps)n/c} $ - $ \ bdd_ $ p,a $ p fors for n n n n n n n n n n n n N/C} $(p,1) \ infty $),假设有随机的强指数时间假设(SETH)。此外,从本质上讲,我们的所有结果(在类似的非均匀假设下)以及预处理的$ \ bdd $都可以得出,其中无限制的预录可以在目标可用之前应用于晶格。 与先前关于$ \ bdd_ {p,α} $硬度的工作相比,liu,lyubashevsky和micciancio(大约2008年),我们的结果提高了该问题的$α$的值,该问题已知$ \ np $ - hard as $ p> p> p> p> p> p_1 \ $ y 4.273 bd and forny of y 4.273 bd,并在第一个$ 4.273 $ hard fixed $ hard fixed $ hard an规范)。我们的减少依赖于$ \ ell_ {p} $ norms的特殊“本地密集”晶格的特殊系列,我们通过修改Aggarwal和Stephens-Davidowitz的整数静态稀疏技术来构建它(STOC 2018)。

$ \newcommand{\Z}{\mathbb{Z}} \newcommand{\eps}{\varepsilon} \newcommand{\cc}[1]{\mathsf{#1}} \newcommand{\NP}{\cc{NP}} \newcommand{\problem}[1]{\mathrm{#1}} \newcommand{\BDD}{\problem{BDD}} $Bounded Distance Decoding $\BDD_{p,α}$ is the problem of decoding a lattice when the target point is promised to be within an $α$ factor of the minimum distance of the lattice, in the $\ell_{p}$ norm. We prove that $\BDD_{p, α}$ is $\NP$-hard under randomized reductions where $α\to 1/2$ as $p \to \infty$ (and for $α=1/2$ when $p=\infty$), thereby showing the hardness of decoding for distances approaching the unique-decoding radius for large $p$. We also show fine-grained hardness for $\BDD_{p,α}$. For example, we prove that for all $p \in [1,\infty) \setminus 2\Z$ and constants $C > 1, \eps > 0$, there is no $2^{(1-\eps)n/C}$-time algorithm for $\BDD_{p,α}$ for some constant $α$ (which approaches $1/2$ as $p \to \infty$), assuming the randomized Strong Exponential Time Hypothesis (SETH). Moreover, essentially all of our results also hold (under analogous non-uniform assumptions) for $\BDD$ with preprocessing, in which unbounded precomputation can be applied to the lattice before the target is available. Compared to prior work on the hardness of $\BDD_{p,α}$ by Liu, Lyubashevsky, and Micciancio (APPROX-RANDOM 2008), our results improve the values of $α$ for which the problem is known to be $\NP$-hard for all $p > p_1 \approx 4.2773$, and give the very first fine-grained hardness for $\BDD$ (in any norm). Our reductions rely on a special family of "locally dense" lattices in $\ell_{p}$ norms, which we construct by modifying the integer-lattice sparsification technique of Aggarwal and Stephens-Davidowitz (STOC 2018).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源