论文标题
量子点中的孔形成相互作用:声子限制和封装材料对自旋轨量子的影响
Hole-phonon interactions in quantum dots: Effects of phonon confinement and encapsulation materials on spin-orbit qubits
论文作者
论文摘要
自旋 - 音波相互作用是限制半导体量子点中自旋量子的寿命的机制之一。与其他机制(例如电荷噪声)的不同,声子是设备固有的,几乎无法缓解。因此,他们将Qubits放松时间的基本限制设定了。在这里,我们引入了一个通用框架,用于计算由散装(3D)引起的自旋(和电荷)过渡速率,并强烈限制了1D或2D声子。我们讨论了6个频段KP模型所描述的孔自旋尺吨的特定情况。接下来,我们将该理论应用于硅启用器设备中的孔值。我们表明,该设备中的自旋松弛是由频带混合术语主导的,该曲线混合术语将孔结合到通过价带变形电势D横向声音子,并优化偏置点和磁场方向,以最大程度地提高RABI振荡Q的数量,这些Q可以在放松时间内实现。尽管在价频段中具有强大的自旋 - 轨道耦合,但声子限制的Q仍可以达到数万个。接下来,我们探讨了声子在1D和2D结构中的影响,以及封装材料对放松速率的影响。我们表明,自旋寿命可以取决于千分钟长的长度尺度的设备结构,并且当量子周围的材料变得越来越困难时,它们会改善。因此,一旦降低了宽松的外在来源,半导体Qubits中的声子工程可能会变得相关。
Spin-phonon interactions are one of the mechanisms limiting the lifetime of spin qubits made in semiconductor quantum dots. At variance with other mechanisms such as charge noise, phonons are intrinsic to the device and can hardly be mitigated. They set, therefore fundamental limits to the relaxation time of the qubits. Here we introduce a general framework for the calculation of the spin (and charge) transition rates induced by bulk (3D) and strongly confined 1D or 2D phonons. We discuss the particular case of hole spin-orbit qubits described by the 6 bands kp model. We next apply this theory to a hole qubit in a silicon-on-insulator device. We show that spin relaxation in this device is dominated by a band mixing term that couples the holes to transverse acoustic phonons through the valence band deformation potential d, and optimize the bias point and magnetic field orientation to maximize the number of Rabi oscillations Q that can be achieved within on relaxation time T1. Despite the strong spin-orbit coupling in the valence band, the phonon-limited Q can reach a few tens of thousands. We next explore the effects of phonon confinement in 1D and 2D structures, and the impact of the encapsulation materials on the relaxation rates. We show that the spin lifetimes can depend on the structure of the device over micrometer-long length scales and that they improve when the materials around the qubit get harder. Phonon engineering in semiconductor qubits may therefore become relevant once the extrinsic sources of relaxation have been reduced.