论文标题

为MLPERF培训和推理开发建议基准

Developing a Recommendation Benchmark for MLPerf Training and Inference

论文作者

Wu, Carole-Jean, Burke, Robin, Chi, Ed H., Konstan, Joseph, McAuley, Julian, Raimond, Yves, Zhang, Hao

论文摘要

基于深度学习的推荐模型被普遍地和广泛地使用,例如推荐与用户最相关的电影,产品或其他信息,以增强用户体验。在受到重要行业和学术研究关注的各种应用领域(例如图像分类,对象检测,语言和语音翻译)中,基于深度学习的推荐模型的性能受到探索较少,即使推荐任务无需毫无疑问地代表了大规模数据中心机队的重要AI推论周期。为了促进对商业领域的理解和实现机器学习系统的开发和优化,我们旨在为MLPERF培训和参与套件定义与行业相关的建议基准。该论文综合了个性化推荐系统的理想建模策略。我们列出了建议模型架构和数据集的理想特征。然后,我们总结了MLPERF建议咨询委员会的讨论和建议。

Deep learning-based recommendation models are used pervasively and broadly, for example, to recommend movies, products, or other information most relevant to users, in order to enhance the user experience. Among various application domains which have received significant industry and academia research attention, such as image classification, object detection, language and speech translation, the performance of deep learning-based recommendation models is less well explored, even though recommendation tasks unarguably represent significant AI inference cycles at large-scale datacenter fleets. To advance the state of understanding and enable machine learning system development and optimization for the commerce domain, we aim to define an industry-relevant recommendation benchmark for the MLPerf Training andInference Suites. The paper synthesizes the desirable modeling strategies for personalized recommendation systems. We lay out desirable characteristics of recommendation model architectures and data sets. We then summarize the discussions and advice from the MLPerf Recommendation Advisory Board.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源