论文标题
Kähler-Einstein距离Diederich-Fornæss索引的下限
A lower bound for the Kähler-Einstein distance from the Diederich-Fornæss index
论文作者
论文摘要
在本说明中,我们建立了由Kähler-Einstein指标在具有正性超凸形指数的伪共元域上引起的距离的下限(例如,diesterich-fornaess指数阳性)。一个关键步骤是证明对Riemannian歧管的Hopf引理的类似物,其ricci曲率从下方界定。
In this note we establish a lower bound for the distance induced by the Kähler-Einstein metric on pseudoconvex domains with positive hyperconvexity index (e.g. positive Diederich-Fornaess index). A key step is proving an analog of the Hopf lemma for Riemannian manifolds with Ricci curvature bounded from below.