论文标题

Kähler-Einstein距离Diederich-Fornæss索引的下限

A lower bound for the Kähler-Einstein distance from the Diederich-Fornæss index

论文作者

Zimmer, Andrew

论文摘要

在本说明中,我们建立了由Kähler-Einstein指标在具有正性超凸形指数的伪共元域上引起的距离的下限(例如,diesterich-fornaess指数阳性)。一个关键步骤是证明对Riemannian歧管的Hopf引理的类似物,其ricci曲率从下方界定。

In this note we establish a lower bound for the distance induced by the Kähler-Einstein metric on pseudoconvex domains with positive hyperconvexity index (e.g. positive Diederich-Fornaess index). A key step is proving an analog of the Hopf lemma for Riemannian manifolds with Ricci curvature bounded from below.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源