论文标题

真正的弹簧纤维和奇数弧代数

Real Springer fibers and odd arc algebras

论文作者

Eberhardt, Jens Niklas, Naisse, Grégoire, Wilbert, Arik

论文摘要

我们对实数上的两排弹簧纤维进行了拓扑描述。我们展示了其共同体学环与劳达·鲁塞尔(Lauda-Russell)引入的复杂弹簧纤维的同胞环的奇特化相吻合。我们还意识到ozsváth-rasmussen-szabóOddtqft从回调和沿催眠术之间的包含和投影图中出色的推动力。使用这些结果,我们将奇数弧代数构建为在真实弹簧纤维的组成部分上的卷积代数,从而给出了Stroppel-webster的构造的奇数类似物。

We give a topological description of the two-row Springer fiber over the real numbers. We show its cohomology ring coincides with the oddification of the cohomology ring of the complex Springer fiber introduced by Lauda-Russell. We also realize Ozsváth-Rasmussen-Szabó odd TQFT from pullbacks and exceptional pushforwards along inclusion and projection maps between hypertori. Using these results, we construct the odd arc algebra as a convolution algebra over components of the real Springer fiber, giving an odd analogue of a construction of Stroppel-Webster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源