论文标题

随机模型预测控制中的惩罚功能设计的概率验证方法

A probabilistic validation approach for penalty function design in Stochastic Model Predictive Control

论文作者

Mammarella, Martina, Alamo, Teodoro, Lucia, Sergio, Dabbene, Fabrizio

论文摘要

在本文中,我们考虑了一个随机模型预测控制能够说明具有无限支持的加性随机干扰的影响,并且不需要对独立性或高斯性的限制性假设。我们根据惩罚功能重新审视相当古典的方法,目的是设计符合某些给定概率规范的控制方案。与以前的方法的主要区别在于,我们不反复出现概率递归可行性的概念,因此我们不会单独考虑不可行的情况。特别是,设想了两个概率设计问题。第一个随机化问题旨在设计\ textit {离线}遵循从基于管的MPC继承的方法,约束集拧紧。对于第二个概率方案,利用特定的概率验证方法来调整惩罚参数,以在可能值的有限家庭中选择\ textit {offline}。这里提出的简单算法允许设计一个\ textit {single}控制器,始终保证在线优化问题的可行性。所提出的方法与以前的方案相比,在计算方面更具计算方法。这是由于以下事实:两个概率设计问题的样本复杂性都以对数的方式取决于预测范围,这与表现出线性依赖性的基于情况的方法不同。通过数值示例证明了所提出的方法的功效。

In this paper, we consider a stochastic Model Predictive Control able to account for effects of additive stochastic disturbance with unbounded support, and requiring no restrictive assumption on either independence nor Gaussianity. We revisit the rather classical approach based on penalty functions, with the aim of designing a control scheme that meets some given probabilistic specifications. The main difference with previous approaches is that we do not recur to the notion of probabilistic recursive feasibility, and hence we do not consider separately the unfeasible case. In particular, two probabilistic design problems are envisioned. The first randomization problem aims to design \textit{offline} the constraint set tightening, following an approach inherited from tube-based MPC. For the second probabilistic scheme, a specific probabilistic validation approach is exploited for tuning the penalty parameter, to be selected \textit{offline} among a finite-family of possible values. The simple algorithm here proposed allows designing a \textit{single} controller, always guaranteeing feasibility of the online optimization problem. The proposed method is shown to be more computationally tractable than previous schemes. This is due to the fact that the sample complexity for both probabilistic design problems depends on the prediction horizon in a logarithmic way, unlike scenario-based approaches which exhibit linear dependence. The efficacy of the proposed approach is demonstrated with a numerical example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源