论文标题

旋转不变的框架,用于深点云分析

A Rotation-Invariant Framework for Deep Point Cloud Analysis

论文作者

Li, Xianzhi, Li, Ruihui, Chen, Guangyong, Fu, Chi-Wing, Cohen-Or, Daniel, Heng, Pheng-Ann

论文摘要

最近,许多深层神经网络被设计用于处理3D点云,但常见的缺点是不能确保旋转不变性,从而导致对任意方向的概括不佳。在本文中,我们引入了一种新的低级纯粹旋转不变的表示形式,以替代通用的3D笛卡尔坐标作为网络输入。此外,我们提出了一个网络体系结构,将这些表示形式嵌入到特征中,编码点与其邻居之间的本地关系以及全球形状结构。为了减轻不可避免的全球信息损失是由旋转不变表示造成的,我们进一步引入了区域关系卷积以编码本地和非本地信息。我们在多个点云分析任务上评估我们的方法,包括形状分类,部分分割和形状检索。实验结果表明,与最先进的方向相比,我们的方法在任意方向的输入方面达到了一致,也是最佳性能。

Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this paper, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval. Experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with the state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源