论文标题

LT-NET:通过学习可逆性素的标签转移,用于一声医疗图像分段

LT-Net: Label Transfer by Learning Reversible Voxel-wise Correspondence for One-shot Medical Image Segmentation

论文作者

Wang, Shuxin, Cao, Shilei, Wei, Dong, Wang, Renzhen, Ma, Kai, Wang, Liansheng, Meng, Deyu, Zheng, Yefeng

论文摘要

我们介绍了一种单次分割方法,以减轻医学图像的手动注释负担。主要思想是将单发电分割视为基于经典地图集的分割问题,在该问题中,可以学习从地图集到未标记数据的素音对应。随后,可以将Atlas的分割标签传输到带有学习对应关系的未标记数据中。但是,由于图像之间的地面真相对应通常不可用,因此必须对学习系统进行良好的监督,以避免模式崩溃和收敛失败。为了克服这一难度,我们诉诸于前进的一致性,该一致性被广泛用于对应问题,并从扭曲的地图集中学习回到原始地图集的后对应关系。这种周期对应的学习设计使各种额外的,基于周期的基于循环的监督信号使训练过程稳定,同时也可以提高性能。我们通过彻底的实验证明了我们方法比基于深度学习的单次分割方法和经典的多ATLAS分割方法的优越性。

We introduce a one-shot segmentation method to alleviate the burden of manual annotation for medical images. The main idea is to treat one-shot segmentation as a classical atlas-based segmentation problem, where voxel-wise correspondence from the atlas to the unlabelled data is learned. Subsequently, segmentation label of the atlas can be transferred to the unlabelled data with the learned correspondence. However, since ground truth correspondence between images is usually unavailable, the learning system must be well-supervised to avoid mode collapse and convergence failure. To overcome this difficulty, we resort to the forward-backward consistency, which is widely used in correspondence problems, and additionally learn the backward correspondences from the warped atlases back to the original atlas. This cycle-correspondence learning design enables a variety of extra, cycle-consistency-based supervision signals to make the training process stable, while also boost the performance. We demonstrate the superiority of our method over both deep learning-based one-shot segmentation methods and a classical multi-atlas segmentation method via thorough experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源