论文标题
运动计划的多模式轨迹优化
Multimodal Trajectory Optimization for Motion Planning
论文作者
论文摘要
现有的运动计划方法通常具有两个缺点:1)用户需要指定目标配置,而2)仅在给定条件下生成一个解决方案。实际上,存在多种可能的目标配置以实现任务。尽管目标配置的选择显着影响了所得轨迹的质量,但用户指定最佳目标配置并不微不足道。此外,轨迹优化中使用的目标函数通常是非凸的,并且可以具有多种实现可比成本的解决方案。在这项研究中,我们提出了一个确定与成本函数不同模式相对应的多个轨迹的框架。我们将确定成本函数模式的问题减少到基于成本函数的分布引起的密度的问题。提出的框架使用户能够从多个候选轨迹中选择一个优选的解决方案,从而使调整成本功能并获得令人满意的解决方案更加容易。我们通过2D和3D空间中的运动计划任务评估了我们提出的方法。我们的实验表明,所提出的算法能够确定这些任务的多个解决方案。
Existing motion planning methods often have two drawbacks: 1) goal configurations need to be specified by a user, and 2) only a single solution is generated under a given condition. In practice, multiple possible goal configurations exist to achieve a task. Although the choice of the goal configuration significantly affects the quality of the resulting trajectory, it is not trivial for a user to specify the optimal goal configuration. In addition, the objective function used in the trajectory optimization is often non-convex, and it can have multiple solutions that achieve comparable costs. In this study, we propose a framework that determines multiple trajectories that correspond to the different modes of the cost function. We reduce the problem of identifying the modes of the cost function to that of estimating the density induced by a distribution based on the cost function. The proposed framework enables users to select a preferable solution from multiple candidate trajectories, thereby making it easier to tune the cost function and obtain a satisfactory solution. We evaluated our proposed method with motion planning tasks in 2D and 3D space. Our experiments show that the proposed algorithm is capable of determining multiple solutions for those tasks.