论文标题
关于$ \ ell $ - adic滑轮的当地伊普西隆因子的连续性
On continuity of local epsilon factors of $\ell$-adic sheaves
论文作者
论文摘要
让$ s $为noetherian计划,$ f \ colon x \ to s $是相对尺寸1的平稳形态。对于本地恒定的捆绑,在$ x $ in $ x $的互补的$ x $上,$ s $以上,deligne和laumon证明,通用的本地循环系统等于当地的壮丽的天鹅守则。在本文中,假设普遍的局部环保性,我们显示了局部epsilon因子连续性的类似结果。我们还将这种结果的概括性化给了一个孤立的奇异家族。
Let $S$ be a noetherian scheme and $f\colon X\to S$ be a smooth morphism of relative dimension 1. For a locally constant sheaf on the complement of a divisor in $X$ at over $S$, Deligne and Laumon proved that the universal local acyclicity is equivalent to the local constancy of Swan conductors. In this article, assuming the universal local acyclicity, we show an analogous result of the continuity of local epsilon factors. We also give a generalization of this result to a family of isolated singularities.