论文标题

一种新颖的交错半平时的时空不连续的盖尔金方法,用于不可压缩的Navier-Stokes方程

A novel staggered semi-implicit space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations

论文作者

Romeo, Francesco Lohengrin, Dumbser, Michael, Tavelli, Maurizio

论文摘要

提出了一种新的高阶准确交错的半平时不连续的盖尔金(DG)方法,用于模拟两个空间维度中非结构化三角网格上的粘性不可压缩流。交错的DG方案定义了原始三角形网格的离散压力,而离散速度是在交错的基于边缘的双重四边形网格上定义的。在本文中,提出了一对新的等序速度速度压力有限元。在初级三角网格(压力元素)上,基本函数是$ n $的分段多项式,并被允许在每个三角形的边界上跳跃。而是在双网眼(速度元素)上,基础函数由两个子三角形的分段$ n $组成,这些子三角形组成每个四边形,并且只能在双重元素边界上跳跃,而它们是连续的。换句话说,双网格上的基础函数是由子三角形上的连续有限元素构建的。此选择允许构建高效,无正常和内存保存算法。在不可压缩的Navier-Stokes方程的耦合时空压力校正公式中,通过使用时间依赖性测试和基础功能以及简单有效的PICARD迭代来实现任意时间的时间准确性。对经典基准测试的几个数值测试证实,所提出的方法的表现优于现有交错的半密度时空DG方案,不仅是从计算机存储器的角度来看,而且还涉及计算时间。

A new high order accurate staggered semi-implicit space-time discontinuous Galerkin (DG) method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions. The staggered DG scheme defines the discrete pressure on the primal triangular mesh, while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh. In this paper, a new pair of equal-order-interpolation velocity-pressure finite elements is proposed. On the primary triangular mesh (the pressure elements) the basis functions are piecewise polynomials of degree $N$ and are allowed to jump on the boundaries of each triangle. On the dual mesh instead (the velocity elements), the basis functions consist in the union of piecewise polynomials of degree $N$ on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries, while they are continuous inside. In other words, the basis functions on the dual mesh are built by continuous finite elements on the subtriangles. This choice allows the construction of an efficient, quadrature-free and memory saving algorithm. In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations, arbitrary high order of accuracy in time is achieved through the use of time-dependent test and basis functions, in combination with simple and efficient Picard iterations. Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes, not only from a computer memory point of view, but also concerning the computational time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源