论文标题

Clifford代数的多场在3D中的平方根:带有标志的游戏

Square root of a multivector of Clifford algebras in 3D: A game with signs

论文作者

Acus, A., Dargys, A.

论文摘要

提出了一种算法,用于从真实Clifford代数Cl(P,Q)中从多骑(MV)中提取平方根的算法,以n = p+q <= 3。我们表明,在最通用(通用)MV的情况下,在代数CL(3,0),Cl(1,2)和Cl(0,3)中最多有四个孤立的根。代数CL(2,1)构成例外,此处的MV最多可以具有16个孤立的根。除了孤立的根外,除p+q = 1以外,所有代数还可以出现一个根的连续体。提供了许多示例来说明n = 3 Clifford代数中可能出现的各种根的属性。

An algorithm to extract the square root in radicals from a multivector (MV) in real Clifford algebras Cl(p,q) for n=p+q <=3 is presented. We show that in the algebras Cl(3,0), Cl(1,2) and Cl(0,3) there are up to four isolated roots in a case of the most general (generic) MV. The algebra Cl(2,1) makes up an exception and the MV here can have up to 16 isolated roots. In addition to isolated roots, a continuum of roots can appear in all algebras except p+q=1. A number of examples are provided to illustrate properties of various roots that may appear in n=3 Clifford algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源