论文标题
基于能量的周期性挖掘具有深度功能,以进行无限制视频中的动作重复计数
Energy-based Periodicity Mining with Deep Features for Action Repetition Counting in Unconstrained Videos
论文作者
论文摘要
动作重复计数是为了估计一个动作中重复运动的发生时间,这是一个相对较新,重要但具有挑战性的测量问题。为了解决这个问题,我们提出了一种在两个方面优于传统方式的新方法,而无需进行预处理,并且适用于任意周期性行动。在不进行预处理的情况下,提出的模型使我们的方法方便用于实际应用;处理任意周期性行动使我们的模型更适合实际情况。在方法论方面,首先,我们根据深度转向提取的动作的空间和时间特征分析了重复行动的运动模式;其次,主要成分分析算法用于从混乱的高维深度中生成直观的周期性信息。第三,根据使用傅立叶变换的高能量规则来开采周期性。最后,提出了具有多级阈值滤波器的逆傅里叶变换以提高开采周期性的质量,并引入了峰值检测以完成重复计数。我们的工作具有两个方面的特征:1)一个重要的见解,即提取的动作识别的深度特征可以很好地模拟重复动作的自相似性周期性。 2)提出了使用深度特征的基于高能的周期性挖掘规则,该规则可以在不进行预处理的情况下处理任意动作。实验结果表明,我们的方法在公共数据集YT段和QUVA上取得了可比的结果。
Action repetition counting is to estimate the occurrence times of the repetitive motion in one action, which is a relatively new, important but challenging measurement problem. To solve this problem, we propose a new method superior to the traditional ways in two aspects, without preprocessing and applicable for arbitrary periodicity actions. Without preprocessing, the proposed model makes our method convenient for real applications; processing the arbitrary periodicity action makes our model more suitable for the actual circumstance. In terms of methodology, firstly, we analyze the movement patterns of the repetitive actions based on the spatial and temporal features of actions extracted by deep ConvNets; Secondly, the Principal Component Analysis algorithm is used to generate the intuitive periodic information from the chaotic high-dimensional deep features; Thirdly, the periodicity is mined based on the high-energy rule using Fourier transform; Finally, the inverse Fourier transform with a multi-stage threshold filter is proposed to improve the quality of the mined periodicity, and peak detection is introduced to finish the repetition counting. Our work features two-fold: 1) An important insight that deep features extracted for action recognition can well model the self-similarity periodicity of the repetitive action is presented. 2) A high-energy based periodicity mining rule using deep features is presented, which can process arbitrary actions without preprocessing. Experimental results show that our method achieves comparable results on the public datasets YT Segments and QUVA.