论文标题

用于校准多级神经网络的订单内保护功能

Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks

论文作者

Rahimi, Amir, Shaban, Amirreza, Cheng, Ching-An, Hartley, Richard, Boots, Byron

论文摘要

预测多级深网的校准置信度得分对于避免罕见但昂贵的错误很重要。一种常见的方法是学习事后校准功能,该功能将原始网络的输出转换为校准的置信得分,同时保持网络的准确性。但是,以前的事后校准技术仅具有简单的校准功能,可能缺乏足够的表示来校准深网的复杂函数景观。在这项工作中,我们旨在学习一般的事后校准功能,以保留任何深层网络的顶级预测。我们称这个功能内订单内的功能。我们提出了一种新的神经网络体系结构,该架构代表一类通过结合常见的神经网络组件来代表一类保留订单内的功能。此外,我们引入了订单不变和对角线亚家族,当训练数据大小较小时,可以作为更好的概括。我们在广泛的数据集和分类器中显示了所提出的方法的有效性。在几个评估指标中,我们的方法的表现优于最先进的事后校准方法,即温度缩放和Dirichlet校准。

Predicting calibrated confidence scores for multi-class deep networks is important for avoiding rare but costly mistakes. A common approach is to learn a post-hoc calibration function that transforms the output of the original network into calibrated confidence scores while maintaining the network's accuracy. However, previous post-hoc calibration techniques work only with simple calibration functions, potentially lacking sufficient representation to calibrate the complex function landscape of deep networks. In this work, we aim to learn general post-hoc calibration functions that can preserve the top-k predictions of any deep network. We call this family of functions intra order-preserving functions. We propose a new neural network architecture that represents a class of intra order-preserving functions by combining common neural network components. Additionally, we introduce order-invariant and diagonal sub-families, which can act as regularization for better generalization when the training data size is small. We show the effectiveness of the proposed method across a wide range of datasets and classifiers. Our method outperforms state-of-the-art post-hoc calibration methods, namely temperature scaling and Dirichlet calibration, in several evaluation metrics for the task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源