论文标题
空心芯纤维内的晶格限制原子的超高原子
Superradiance from Lattice-Confined Atoms inside Hollow Core Fibre
论文作者
论文摘要
揭开超高倍率,也称为超荧光,依赖于相匹配的偶极振荡器的合奏以及抑制不均匀拓宽。在这里,我们在一个新型的超级平台上报告,该平台结合了一个没有交流的晶格和空心的光子光子晶体纤维,从而使超过$ 2 \ mathrm {mmm} $从多普勒效应中免费提供了超过$ 2 \ mathrm {mmm} $的扩展相互作用。该系统允许控制原子空间分布和光谱均匀性,同时有效地将辐射场与光纤耦合。超高的实验观察和理论上的时间,光谱和空间动力学行为,例如,超高率响起和密度依赖性频率转移,表明了捕获原子与纤维引导的磁场之间的独特相互作用。我们的理论表明,导向光的产生时间演变显示出最小的梁半径为$ 3.1 \ mathrm {μm} $,比最低纤维纤维模式小的三倍。
Unravelling superradiance, also known as superfluorescence, relies on an ensemble of phase-matched dipole oscillators and the suppression of inhomogeneous broadening. Here we report on a novel superradiance platform that combines an optical lattice free from the ac Stark shift and a hollow-core photonic crystal fibre, enabling an extended atom-light interaction over $2 \mathrm{mm}$ free from the Doppler effect. This system allows controlling the atom spatial distribution and spectral homogeneity whilst efficiently coupling the radiation field to an optical fibre. The experimentally-observed and theoretically-corroborated temporal, spectral and spatial dynamic behaviours of the superradiance, e.g., superradiance ringing and density-dependent frequency shift, demonstrate a unique interplay between the trapped atoms and the fibre-guided field with multiple transverse modes. Our theory indicates the resulting temporal evolution of the guided light shows a minimal beam radius of $3.1 \mathrm{μm}$ that is three times smaller than that of the lowest-loss fibre mode.