论文标题

使用曲率选择延迟重建的时间滞后

Using Curvature to Select the Time Lag for Delay Reconstruction

论文作者

Deshmukh, Varad, Bradley, Elizabeth, Garland, Joshua, Meiss, James D.

论文摘要

我们提出了一种基于曲率的方法,用于在延迟重建中为Time-Delay参数$τ$选择良好的值。这个想法基于延迟对重建几何形状的影响。如果选择延迟太小,则沿着嵌入空间的主对角线将重建的动力学扁平。另一方面,太大的延迟可能会使动力学过多。计算二维延迟重建的曲率是识别这些极端并在它们之间找到中间立场的有效方法:在不充分展开的重建末端的尖锐逆转和过度折叠的折叠在曲率中产生尖峰。我们通过计算不同时间延迟的2D重建的Menger曲率的平均值来实现这一观察结果。我们表明,这些值的平均值为选择时间延迟提供了有效的启发式。此外,我们表明,即使在使用平均互信息的习惯方法失败的情况下,这种基于曲率的启发式也很有用,例如嘈杂或过滤数据。

We propose a curvature-based approach for choosing good values for the time-delay parameter $τ$ in delay reconstructions. The idea is based on the effects of the delay on the geometry of the reconstructions. If the delay is chosen too small, the reconstructed dynamics are flattened along the main diagonal of the embedding space; too-large delays, on the other hand, can overfold the dynamics. Calculating the curvature of a two-dimensional delay reconstruction is an effective way to identify these extremes and to find a middle ground between them: both the sharp reversals at the ends of an insufficiently unfolded reconstruction and the folds in an overfolded one create spikes in the curvature. We operationalize this observation by computing the mean over the Menger curvature of 2D reconstructions for different time delays. We show that the mean of these values gives an effective heuristic for choosing the time delay. In addition, we show that this curvature-based heuristic is useful even in cases where the customary approach, which uses average mutual information, fails --- e.g., noisy or filtered data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源