论文标题

Thevenin的电池模型的一击参数识别:方法和验证

One-Shot Parameter Identification of the Thevenin's Model for Batteries: Methods and Validation

论文作者

Tian, Ning, Wang, Yebin, Chen, Jian, Fang, Huazhen

论文摘要

参数估计对于各种基于模型的电池管理任务,包括充电控制,充电估计和老龄化评估的基本重要性。但是,这仍然是一个具有挑战性的问题,因为现有方法通常取决于繁琐和耗时的程序,以从数据中提取电池参数。本文偏离了文献,将一个独特的目的设定了一个独特的目的,即在单次过程中识别所有参数,包括电阻和电容参数以及参数化函数映射的参数,从电荷到开放电路伏特。考虑到众所周知的Thevenin电池模型,研究始于参数可识别性分析,表明所有参数均可局部识别。然后,它在预测 - 轨道最小化框架中制定了参数识别问题。由于该问题的非跨性别性可能会导致物理上毫无意义的估计,因此开发了两种方法来克服此问题。第一个是通过设置参数范围来限制合理空间中的参数搜索,而另一个则使用先验参数猜测采用成本函数的正则化。提出的可识别性分析和识别方法通过模拟和实验得到了广泛的验证。

Parameter estimation is of foundational importance for various model-based battery management tasks, including charging control, state-of-charge estimation and aging assessment. However, it remains a challenging issue as the existing methods generally depend on cumbersome and time-consuming procedures to extract battery parameters from data. Departing from the literature, this paper sets the unique aim of identifying all the parameters offline in a one-shot procedure, including the resistance and capacitance parameters and the parameters in the parameterized function mapping from the state-of-charge to the open-circuit voltage. Considering the well-known Thevenin's battery model, the study begins with the parameter identifiability analysis, showing that all the parameters are locally identifiable. Then, it formulates the parameter identification problem in a prediction-error-minimization framework. As the non-convexity intrinsic to the problem may lead to physically meaningless estimates, two methods are developed to overcome this issue. The first one is to constrain the parameter search within a reasonable space by setting parameter bounds, and the other adopts regularization of the cost function using prior parameter guess. The proposed identifiability analysis and identification methods are extensively validated through simulations and experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源