论文标题

通过语义一致性进行自我监督的单视图3D重建

Self-supervised Single-view 3D Reconstruction via Semantic Consistency

论文作者

Li, Xueting, Liu, Sifei, Kim, Kihwan, De Mello, Shalini, Jampani, Varun, Yang, Ming-Hsuan, Kautz, Jan

论文摘要

我们学习了一个自我保护的单视图3D重建模型,该模型可预测目标对象的3D网格形状,纹理和摄像头姿势,并收集了2D图像和轮廓。提出的方法不需要3D监督,手动注释的关键点,对象的多视图图像或先前的3D模板。我们工作的关键见解是,物体可以表示为可变形部分的集合,并且每个部分在同一类别的不同实例上具有语义相干(例如,汽车上的鸟和车轮上的翅膀)。因此,通过利用大量类别图像集合的自制零件分割,我们可以有效地在重建的网格和原始图像之间实现语义一致性。这大大降低了对物体的形状和相机姿势以及质地的镜头的联合预测。据我们所知,我们是第一个尝试解决单视图重建问题而没有类别特定模板网格或语义关键点的人。因此,我们的模型可以轻松地将其推广到没有此类标签的各种对象类别,例如马,企鹅等。通过在多种可变形和刚性对象的多种实验中,我们证明了我们的无人接受的方法的性能比现有类别特定的类别特定的造型方法相当,并且通过监督进行了。

We learn a self-supervised, single-view 3D reconstruction model that predicts the 3D mesh shape, texture and camera pose of a target object with a collection of 2D images and silhouettes. The proposed method does not necessitate 3D supervision, manually annotated keypoints, multi-view images of an object or a prior 3D template. The key insight of our work is that objects can be represented as a collection of deformable parts, and each part is semantically coherent across different instances of the same category (e.g., wings on birds and wheels on cars). Therefore, by leveraging self-supervisedly learned part segmentation of a large collection of category-specific images, we can effectively enforce semantic consistency between the reconstructed meshes and the original images. This significantly reduces ambiguities during joint prediction of shape and camera pose of an object, along with texture. To the best of our knowledge, we are the first to try and solve the single-view reconstruction problem without a category-specific template mesh or semantic keypoints. Thus our model can easily generalize to various object categories without such labels, e.g., horses, penguins, etc. Through a variety of experiments on several categories of deformable and rigid objects, we demonstrate that our unsupervised method performs comparably if not better than existing category-specific reconstruction methods learned with supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源