论文标题
$ \ ell^2 $ betti数字和随机组的连贯性
$\ell^2$ Betti numbers and coherence of random groups
论文作者
论文摘要
我们研究$ \ ell^2 $ betti数字,连贯性和少数模型中随机组的虚拟纤维。特别是,具有负欧拉特征的随机组是连贯的,具有集中在维度1中的$ \ ell^2 $同源性,并嵌入具有很高概率的几乎逐一群体中。在零EULER特征情况下显示了类似的结果,其概率为正。
We study $\ell^2$ Betti numbers, coherence, and virtual fibring of random groups in the few-relator model. In particular, random groups with negative Euler characteristic are coherent, have $\ell^2$ homology concentrated in dimension 1, and embed in a virtually free-by-cyclic group with high probability. Similar results are shown with positive probability in the zero Euler characteristic case.