论文标题

$ \ ell^2 $ betti数字和随机组的连贯性

$\ell^2$ Betti numbers and coherence of random groups

论文作者

Kielak, Dawid, Kropholler, Robert, Wilkes, Gareth

论文摘要

我们研究$ \ ell^2 $ betti数字,连贯性和少数模型中随机组的虚拟纤维。特别是,具有负欧拉特征的随机组是连贯的,具有集中在维度1中的$ \ ell^2 $同源性,并嵌入具有很高概率的几乎逐一群体中。在零EULER特征情况下显示了类似的结果,其概率为正。

We study $\ell^2$ Betti numbers, coherence, and virtual fibring of random groups in the few-relator model. In particular, random groups with negative Euler characteristic are coherent, have $\ell^2$ homology concentrated in dimension 1, and embed in a virtually free-by-cyclic group with high probability. Similar results are shown with positive probability in the zero Euler characteristic case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源