论文标题
$ K $ -Lefschetz物业,部分矩阵和超平面布置
$k$-Lefschetz properties, sectional matrices and hyperplane arrangements
论文作者
论文摘要
在本文中,我们研究了非艺术代数的$ k $ - lefschetz物业,证明在这种情况下可以概括Artinian案件中的几个已知结果。此外,我们描述了如何使用截面矩阵表征具有$ k $ lefschetz属性的分级代数。然后,我们将获得的结果应用于超平面布置的雅各布代数的研究,并特别注意自由布置类别。
In this article, we study the $k$-Lefschetz properties for non-Artinian algebras, proving that several known results in the Artinian case can be generalized in this setting. Moreover, we describe how to characterize the graded algebras having the $k$-Lefschetz properties using sectional matrices. We then apply the obtained results to the study of the Jacobian algebra of hyperplane arrangements, with particular attention to the class of free arrangements.