论文标题

$ K $ -Lefschetz物业,部分矩阵和超平面布置

$k$-Lefschetz properties, sectional matrices and hyperplane arrangements

论文作者

Palezzato, Elisa, Torielli, Michele

论文摘要

在本文中,我们研究了非艺术代数的$ k $ - lefschetz物业,证明在这种情况下可以概括Artinian案件中的几个已知结果。此外,我们描述了如何使用截面矩阵表征具有$ k $ lefschetz属性的分级代数。然后,我们将获得的结果应用于超平面布置的雅各布代数的研究,并特别注意自由布置类别。

In this article, we study the $k$-Lefschetz properties for non-Artinian algebras, proving that several known results in the Artinian case can be generalized in this setting. Moreover, we describe how to characterize the graded algebras having the $k$-Lefschetz properties using sectional matrices. We then apply the obtained results to the study of the Jacobian algebra of hyperplane arrangements, with particular attention to the class of free arrangements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源