论文标题
从实验和观察性约束中确定对称能量;对Crex的预测
Determination of symmetry energy from experimental and observational constraints; prediction on CREX
论文作者
论文摘要
服用$ r _ {\ rm skin}^{208}({\ rm prex})= 0.33^{+0.16} _ { - 0.18}〜{\ rm fm fm} $作为实验性约束,$ m _ { m} _ {\ rm sun} $作为观察性(天体物理)约束,我们确定$ j $,$ l $,$ k _ {\ rm sym} $的无可争辩范围,以等式〜\ eqref {eq-sym}定义。为此,我们采用统计方法。我们首先从理论工作中积累了206个EOS数据,并在206 EOSS的$ r _ {\ rm skin}^{208} $和$ l $之间进行相关性,其中7个gogny Eoss是通过我们的计算获得的。由于相关系数为$ r = 0.99 $,因此我们可以将$ l $视为$ r _ {\ rm skin}^{208} $的函数,这样我们就可以成功地推导经验约束$ l = 31-161 $ 〜MEV,从$ r _ { prex})= 0.15-0.49 $ 〜fm。对于满足观察性约束的47个EOSS,46 EOSS满足经验约束。 46 EOSS产量$ J = 29-44 $ 〜Mev,$ L = 37-135 $ 〜Mev,$ k _ {\ rm sym} =( - 137) - (160)$ 〜Mev。这是主要结果。当我们在$ r _ {\ rm skin}^{48} $和$ r _ {\ rm skin}^{208} $之间进行相关时,206 eoss,$ r $为0.99。 $ r _ {\ rm skin}^{48} $ - $ r _ {\ rm skin}^{208} $之间的关系使我们能够将$ r _ {\ rm skin}^{\ rm skin}^{208}({\ rm prex})$转换为$ r _} $ r _}^rm preative in probimate in {{\ rm prex}) $ r _ {\ rm skin}^{48} $对于正在进行的Crex,我们采用了加权平均值,其在$ r _ {\ rm skin}^{48} $上的两个当前数据的误差以及$ r _ {\ rm skin}^{48} $上的prex值。加权平均值为$ r _ {\ rm skin}^{48} = 0.17 $ 〜fm。这是Crex中心值的预测。
Taking $r_{\rm skin}^{208}({\rm PREX})=0.33^{+0.16}_{-0.18}~{\rm fm}$ as an experimental constraint and $M_{\rm max}^{\rm NS} \ge 2{\rm M}_{\rm sun}$ as an observational (astrophysical) constraint, we determine an indisputable range for $J$, $L$, $K_{\rm sym}$ defined in Eq.~\eqref{eq-S-sym}. For this purpose, we take a statistical approach. We first accumulate the 206 EoS data from theoretical works and take correlation between $r_{\rm skin}^{208}$ and $L$ for the 206 EoSs, where 7 Gogny EoSs are obtained by our calculations. Since the correlation coefficient is $R = 0.99$, we can regard $L$ as a function of $r_{\rm skin}^{208}$, so that we succeed in deducing an empirical constraint $L=31-161$~MeV from $r_{\rm skin}^{208}({\rm PREX})=0.15-0.49$~fm. For the 47 EoSs satisfying the observational constraint, 46 EoSs satisfy the empirical constraint. The 46 EoSs yield $J=29-44$~MeV, $L= 37-135$~MeV, $K_{\rm sym}=(-137)-(160)$~MeV. The is a primary result. When we take correlation between $r_{\rm skin}^{48}$ and $r_{\rm skin}^{208}$ for the 206 EoSs, $R$ is 0.99. The $r_{\rm skin}^{48}$--$r_{\rm skin}^{208}$ relation allows us to transform $r_{\rm skin}^{208}({\rm PREX})$ into the corresponding data on $r_{\rm skin}^{48}$ In order to estimate a value of $r_{\rm skin}^{48}$ for ongoing CREX, we take the weighted mean and its error of two present data on $r_{\rm skin}^{48}$ and transformed PREX value on $r_{\rm skin}^{48}$. The weighted mean is $r_{\rm skin}^{48}=0.17$~fm. This is a prediction for the central value of CREX.