论文标题

自适应图卷积网络,带有注意图聚类以进行共同检测

Adaptive Graph Convolutional Network with Attention Graph Clustering for Co-saliency Detection

论文作者

Zhang, Kaihua, Li, Tengpeng, Shen, Shiwen, Liu, Bo, Chen, Jin, Liu, Qingshan

论文摘要

联合检测旨在从一组相关图像中发现常见和显着的前景。对于此任务,我们提出了一个具有注意力图聚类(GCAGC)的新型自适应图卷积网络。已经做出了三项主要贡献,并在实验上证明具有实质性的实践优点。首先,我们提出了一个图形卷积网络设计,以提取信息提示以表征内部和间接对应关系。其次,我们开发了一种注意力图聚类算法,以无监督的方式将常见对象与所有显着前景对象区分开。第三,我们提出了一个具有编码器二次结构的统一框架,以共同训练并优化图形卷积网络,注意力图集群和以端到端方式进行共同检测解码器。我们在三个宇宙检测基准数据集(Icoseg,cosal2015和可可se)上评估了我们提出的GCAGC方法。我们的GCAGC方法对大多数的最新方法都取得了重大改进。

Co-saliency detection aims to discover the common and salient foregrounds from a group of relevant images. For this task, we present a novel adaptive graph convolutional network with attention graph clustering (GCAGC). Three major contributions have been made, and are experimentally shown to have substantial practical merits. First, we propose a graph convolutional network design to extract information cues to characterize the intra- and interimage correspondence. Second, we develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion. Third, we present a unified framework with encoder-decoder structure to jointly train and optimize the graph convolutional network, attention graph cluster, and co-saliency detection decoder in an end-to-end manner. We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets (iCoseg, Cosal2015 and COCO-SEG). Our GCAGC method obtains significant improvements over the state-of-the-arts on most of them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源