论文标题

对乘法亚组的指数总和的新估计和素数间隔

New estimates for exponential sums over multiplicative subgroups and intervals in prime fields

论文作者

di Benedetto, Daniel, Garaev, Moubariz Z., García, Víctor C., González-Sánchez, Diego, Shparlinski, Igor E., Trujillo, Carlos A.

论文摘要

令$ {\ Mathcal H} $为$ \ mathbb {f} _p^*$的乘法子组,$ h> p^{1/4} $。我们表明$$ \ max _ {(a,p)= 1} \ left | \ sum_ {x \ in {\ mathcal h}}} {\ mathbf {\,\,e}} _ p(ax)_ p(ax)\ right | \ le h^{1-31/2880+o(1)},$$其中$ {\ mathbf {\,e}} _ p(z)= \ exp(2πiz/p)$,这改善了Bourgain and Garaev(2009)的结果。我们还获得了带有product $ nx $的双重指数和$ x \ in {\ mathcal h} $的新估算值,而在{\ Mathcal n} $中,对于连续整数的简短间隔$ {\ Mathcal n} $,{\ Mathcal n} $ in {\ Mathcal n} $。

Let ${\mathcal H}$ be a multiplicative subgroup of $\mathbb{F}_p^*$ of order $H>p^{1/4}$. We show that $$ \max_{(a,p)=1}\left|\sum_{x\in {\mathcal H}} {\mathbf{\,e}}_p(ax)\right| \le H^{1-31/2880+o(1)}, $$ where ${\mathbf{\,e}}_p(z) = \exp(2 πi z/p)$, which improves a result of Bourgain and Garaev (2009). We also obtain new estimates for double exponential sums with product $nx$ with $x \in {\mathcal H}$ and $n \in {\mathcal N}$ for a short interval ${\mathcal N}$ of consecutive integers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源