论文标题

最佳控制成本折现的布尔控制网络:基于确定性马尔可夫决策过程的有效方法

Optimal Control of Boolean Control Networks with Discounted Cost: An Efficient Approach based on Deterministic Markov Decision Process

论文作者

Gao, Shuhua, Xiang, Cheng, Lee, Tong Heng

论文摘要

本文介绍了布尔控制网络(BCN)的无限 - 水手最佳控制问题,并具有折扣成本标准。在现有研究的研究中,已经研究了该问题,其算法为特征,其特征是高计算复杂性。因此,我们尝试从确定性的马尔可夫决策过程(DMDP)的角度来开发更有效的方法。首先,我们显示了DMDP的资格来建模BCN的控制过程和最佳解决方案的存在。接下来,开发了两种方法来处理DMDP中的最佳控制问题。一种方法采用了众所周知的价值迭代算法,而另一种方法是针对专门为DMDP设计的Madani算法的方法。后一种方法可以从时间效率方面找到一个确切的最佳解决方案,并且以前的效率优于现有方法,而以前的基于价值迭代的方法通常比所有其他方法都快得多。细菌\ textIt {e的9态4输入\ textit {ara}操纵子网络。大肠杆菌用于验证我们方法的有效性和性能。结果表明,与现有工作相比,两种方法都可以大幅度地减少几个数量级。

This paper deals with the infinite-horizon optimal control problem for Boolean control networks (BCNs) with a discounted-cost criterion. This problem has been investigated in existing studies with algorithms characterized by high computational complexity. We thus attempt to develop more efficient approaches for this problem from a deterministic Markov decision process (DMDP) perspective. First, we show the eligibility of a DMDP to model the control process of a BCN and the existence of an optimal solution. Next, two approaches are developed to handle the optimal control problem in a DMDP. One approach adopts the well-known value iteration algorithm, and the other resorts to the Madani's algorithm specifically designed for DMDPs. The latter approach can find an exact optimal solution and outperform existing methods in terms of time efficiency, while the former value iteration based approach usually obtains a near-optimal solution much faster than all others. The 9-state-4-input \textit{ara} operon network of the bacteria \textit{E. coli} is used to verify the effectiveness and performance of our approaches. Results show that both approaches can reduce the running time dramatically by several orders of magnitude compared with existing work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源