论文标题
基于Biggan的贝叶斯重建自然图像来自人类大脑活动
BigGAN-based Bayesian reconstruction of natural images from human brain activity
论文作者
论文摘要
在视觉解码域中,鉴于通过功能性磁共振成像(fMRI)监测的相应人脑活动的视觉重建图像非常困难,尤其是当重建查看的自然图像时。视觉重建是fMRI数据上的有条件图像生成,因此最近引入了该任务的自然图像生成的生成对抗网络(GAN)。尽管基于GAN的方法大大改善,但由于fMRI数据样本的数量少以及GAN培训的不稳定性,重建的保真度和自然性仍然不令人满意。在这项研究中,我们提出了一种新的基于GAN的贝叶斯视觉重建方法(GAN-BVRM),其中包括从fMRI数据中解码类别的分类器,一种预训练的条件发生器,以生成指定类别的自然图像,以及一组编码和评估器,以评估生成的图像。 GAN-BVRM采用了盛行的Biggan的预训练的发电机来产生大量的自然图像,并选择通过编码模型作为图像刺激的重建,选择与相应的大脑活动匹配的图像。在此过程中,重建的语义和详细内容分别由解码类别和编码模型控制。 GAN-BVRM使用贝叶斯的方式避免了当前基于GAN的方法的自然与忠诚之间的矛盾,因此可以改善GAN的优势。实验结果表明,GAN-BVRM改善了富达和自然性,即重建是自然的,与所提出的图像刺激相似。
In the visual decoding domain, visually reconstructing presented images given the corresponding human brain activity monitored by functional magnetic resonance imaging (fMRI) is difficult, especially when reconstructing viewed natural images. Visual reconstruction is a conditional image generation on fMRI data and thus generative adversarial network (GAN) for natural image generation is recently introduced for this task. Although GAN-based methods have greatly improved, the fidelity and naturalness of reconstruction are still unsatisfactory due to the small number of fMRI data samples and the instability of GAN training. In this study, we proposed a new GAN-based Bayesian visual reconstruction method (GAN-BVRM) that includes a classifier to decode categories from fMRI data, a pre-trained conditional generator to generate natural images of specified categories, and a set of encoding models and evaluator to evaluate generated images. GAN-BVRM employs the pre-trained generator of the prevailing BigGAN to generate masses of natural images, and selects the images that best matches with the corresponding brain activity through the encoding models as the reconstruction of the image stimuli. In this process, the semantic and detailed contents of reconstruction are controlled by decoded categories and encoding models, respectively. GAN-BVRM used the Bayesian manner to avoid contradiction between naturalness and fidelity from current GAN-based methods and thus can improve the advantages of GAN. Experimental results revealed that GAN-BVRM improves the fidelity and naturalness, that is, the reconstruction is natural and similar to the presented image stimuli.