论文标题
使用深胶囊从血管内光学相干断层扫描中分割冠状动脉分割
Coronary Artery Segmentation from Intravascular Optical Coherence Tomography Using Deep Capsules
论文作者
论文摘要
血管内光学相干断层扫描(IVOCT)对冠状动脉动脉的分割和分析是诊断和管理冠状动脉疾病的重要方面。当前的图像处理方法受到生成专家标签数据集所需的时间以及在分析过程中的偏见的可能性受到阻碍。因此,使用图像处理从IVOCT中提取自动化,健壮,无偏见和及时的几何形状将对临床医生有益。考虑到临床应用,我们的目标是开发一个具有较小记忆足迹的模型,该模型在推理时间很快而不会牺牲细分质量。使用来自22位患者的12,011个专家标签图像的大型IVOCT数据集,我们基于胶囊构建了一种新的深度学习方法,该方法会自动产生管腔分割。我们的数据集包含具有血液和轻伪影的图像(22.8%),以及金属(23.1%)和可生物可吸收支架(2.5%)。我们将数据集分为培训(70%),验证(20%)和测试(10%)设置,并严格研究有关上采样制度和输入选择的设计变化。我们表明,我们的发展导致了一个模型DeepCap,该模型与最先进的机器学习方法相提并论,而细分质量和鲁棒性则仅使用了多达12%的参数。与其他最先进的模型相比,这使得DeepCap的每个图像推理时间最大高达70%,而CPU的速度最高为95%。 DeepCap是一种强大的自动分割工具,可以帮助临床医生从IVOCT中提取无偏的几何数据。
The segmentation and analysis of coronary arteries from intravascular optical coherence tomography (IVOCT) is an important aspect of diagnosing and managing coronary artery disease. Current image processing methods are hindered by the time needed to generate expert-labelled datasets and the potential for bias during the analysis. Therefore, automated, robust, unbiased and timely geometry extraction from IVOCT, using image processing, would be beneficial to clinicians. With clinical application in mind, we aim to develop a model with a small memory footprint that is fast at inference time without sacrificing segmentation quality. Using a large IVOCT dataset of 12,011 expert-labelled images from 22 patients, we construct a new deep learning method based on capsules which automatically produces lumen segmentations. Our dataset contains images with both blood and light artefacts (22.8%), as well as metallic (23.1%) and bioresorbable stents (2.5%). We split the dataset into a training (70%), validation (20%) and test (10%) set and rigorously investigate design variations with respect to upsampling regimes and input selection. We show that our developments lead to a model, DeepCap, that is on par with state-of-the-art machine learning methods in terms of segmentation quality and robustness, while using as little as 12% of the parameters. This enables DeepCap to have per image inference times up to 70% faster on GPU and up to 95% faster on CPU compared to other state-of-the-art models. DeepCap is a robust automated segmentation tool that can aid clinicians to extract unbiased geometrical data from IVOCT.