论文标题

Kronecker协方差MLE的存在和独特性

Existence and Uniqueness of the Kronecker Covariance MLE

论文作者

Drton, Mathias, Kuriki, Satoshi, Hoff, Peter

论文摘要

在矩阵值数据集中,采样的矩阵通常在行和列之间都显示出相关性。这种依赖性的有用且简约的模型是矩阵正常模型,其中随机矩阵的元素之间的协方差是根据两个协方差矩阵的Kronecker乘积进行了参数化的,一个代表行协方差和一个代表柱协方差。这种矩阵正常模型的一个吸引人的功能是,即使只有很少数量的数据矩阵,Kronecker协方差结构也可以进行标准的推理。例如,在某些情况下,可能以一个样本量进行依赖的可能性比测试。但是,更一般而言,确保矩阵正常可能性的界限或唯一最大化器的存在所需的样本量取决于矩阵维度。这激发了研究需要大小的研究,以确保存在最大的似然估计器,并且与概率一个相关。我们的主要结果在范式中给出了精确的样本量阈值,其中行数和数据矩阵的列数最多不同于两个因子。我们的证明使用不变性属性,使我们可以考虑从Kronecker典型形式获得的基质铅笔的数据矩阵。

In matrix-valued datasets the sampled matrices often exhibit correlations among both their rows and their columns. A useful and parsimonious model of such dependence is the matrix normal model, in which the covariances among the elements of a random matrix are parameterized in terms of the Kronecker product of two covariance matrices, one representing row covariances and one representing column covariance. An appealing feature of such a matrix normal model is that the Kronecker covariance structure allows for standard likelihood inference even when only a very small number of data matrices is available. For instance, in some cases a likelihood ratio test of dependence may be performed with a sample size of one. However, more generally the sample size required to ensure boundedness of the matrix normal likelihood or the existence of a unique maximizer depends in a complicated way on the matrix dimensions. This motivates the study of how large a sample size is needed to ensure that maximum likelihood estimators exist, and exist uniquely with probability one. Our main result gives precise sample size thresholds in the paradigm where the number of rows and the number of columns of the data matrices differ by at most a factor of two. Our proof uses invariance properties that allow us to consider data matrices in canonical form, as obtained from the Kronecker canonical form for matrix pencils.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源