论文标题
描述趋化大肠杆菌菌落的PDE模型的数学处理
Mathematical treatment of PDE model describing chemotactic E. coli colonies
论文作者
论文摘要
我们考虑了描述细菌大肠杆菌菌落模式的形成的初始价值问题。该模型由趋化域中的趋化域理论的反应扩散方程与凯勒 - 塞格系统结合,并补充了零升边界条件和非负初始数据。我们回答有关解决方案的全局存在以及其庞大时间行为的问题。此外,我们表明,相关模型的解决方案可能会在有限的时间内爆炸。
We consider an initial-boundary value problem describing the formation of colony patterns of bacteria Escherichia coli. This model consists of reaction-diffusion equations coupled with the Keller-Segel system from the chemotaxis theory in a bounded domain, supplemented with zero-flux boundary conditions and with non-negative initial data. We answer questions on the global in time existence of solutions as well as on their large time behaviour. Moreover, we show that solutions of a related model may blow up in a finite time.