论文标题
倾斜倾斜浸入复杂空间形式的存在和独特定理
Existence and uniqueness theorems for pointwise slant immersions in complex space forms
论文作者
论文摘要
An isometric immersion $f: M^{n} \rightarrow \tilde M^{m}$ from an $n$-dimensional Riemannian manifold $M^{n}$ into an almost Hermitian manifold $\tilde M^{m}$ of complex dimension $m$ is called pointwise slant if its Wirtinger angles define a function defined on $M$.在本文中,我们确定了Riemannian歧管的倾斜沉浸式的存在和独特定理,将$ m^{n} $置于复杂的空间形式$ \ tilde m^{n}(c)c $ c $ c $ c $。
An isometric immersion $f: M^{n} \rightarrow \tilde M^{m}$ from an $n$-dimensional Riemannian manifold $M^{n}$ into an almost Hermitian manifold $\tilde M^{m}$ of complex dimension $m$ is called pointwise slant if its Wirtinger angles define a function defined on $M$. In this paper we establish the existence and uniqueness theorems for pointwise slant immersions of Riemannian manifolds $M^{n}$ into a complex space form $\tilde M^{n}(c)$ of constant holomorphic sectional curvature $c$.