论文标题

倾斜倾斜浸入复杂空间形式的存在和独特定理

Existence and uniqueness theorems for pointwise slant immersions in complex space forms

论文作者

Alghanemi, Azeb, Al-houiti, Noura M., Chen, Bang-Yen, Uddin, Siraj

论文摘要

An isometric immersion $f: M^{n} \rightarrow \tilde M^{m}$ from an $n$-dimensional Riemannian manifold $M^{n}$ into an almost Hermitian manifold $\tilde M^{m}$ of complex dimension $m$ is called pointwise slant if its Wirtinger angles define a function defined on $M$.在本文中,我们确定了Riemannian歧管的倾斜沉浸式的存在和独特定理,将$ m^{n} $置于复杂的空间形式$ \ tilde m^{n}(c)c $ c $ c $ c $。

An isometric immersion $f: M^{n} \rightarrow \tilde M^{m}$ from an $n$-dimensional Riemannian manifold $M^{n}$ into an almost Hermitian manifold $\tilde M^{m}$ of complex dimension $m$ is called pointwise slant if its Wirtinger angles define a function defined on $M$. In this paper we establish the existence and uniqueness theorems for pointwise slant immersions of Riemannian manifolds $M^{n}$ into a complex space form $\tilde M^{n}(c)$ of constant holomorphic sectional curvature $c$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源