论文标题
L-Galaxies 2020:空间分辨的冷气相,星旋盘的恒星形成和化学富集
L-GALAXIES 2020: Spatially resolved cold gas phases, star formation and chemical enrichment in galactic discs
论文作者
论文摘要
我们已经更新了慕尼黑星系构建模型L-galaxies,以遵循星系盘中恒星以及原子和分子气体的径向分布。我们包括基于H2的恒星形成定律,以及具有SN-II,SN-IA和AGB星的明确质量依赖性延迟时间的详细化学化模型。有关圆盘的恒星形成,反馈和化学富集历史的信息存储在12个同心环中。新模型保留了其前身在复制星系人群的演变方面的成功,特别是在红移范围内,恒星质量功能和被动分数0 <= z <= z <= 3 = 3 = 3 <= log = log = log(m _*/msun)<= 12,z = 0,z = 0,z = 0,z = 0,z = 0,z = 0,z = 0,s = 0,s = 0,星形质量和质量质量,是一个功能,是一个功能,是一个功能,是一个功能,是一个功能,是一个功能,是一个功能,是一个功能,是一个功能,是一个功能,是构成功能的功能。恒星和气体成分。此外,其对光盘的径向结构的详细建模可以与观察结果进行定性的新比较,最著名的是圆盘中恒星,原子和分子成分的相对大小和质量。与最新数据发现了良好的协议。比较质量分辨率不同两个数量级的模拟获得的结果的比较表明,即使对于这个更详细的模型,所有重要分布在数值上都融合得很好。对恒星和气体中的金属性和表面密度梯度的检查表明,我们的新模型以恒星形成,化学富集和反馈在局部圆盘尺度上进行了自谐度,从而再现了最近的许多速度IFU调查中看到的一些但并非所有趋势。
We have updated the Munich galaxy formation model, L-Galaxies, to follow the radial distributions of stars and atomic and molecular gas in galaxy discs. We include an H2-based star-formation law, as well as a detailed chemical-enrichment model with explicit mass-dependent delay times for SN-II, SN-Ia and AGB stars. Information about the star formation, feedback and chemical-enrichment histories of discs is stored in 12 concentric rings. The new model retains the success of its predecessor in reproducing the observed evolution of the galaxy population, in particular, stellar mass functions and passive fractions over the redshift range 0<=z<=3 and mass range 8<=log(M_*/Msun)<=12, the black hole-bulge mass relation at z=0, galaxy morphology as a function of stellar mass and the mass-metallicity relations of both stellar and gas components. In addition, its detailed modelling of the radial structure of discs allows qualitatively new comparisons with observation, most notably with the relative sizes and masses of the stellar, atomic and molecular components in discs. Good agreement is found with recent data. Comparison of results obtained for simulations differing in mass resolution by more than two orders of magnitude shows that all important distributions are numerically well converged even for this more detailed model. An examination of metallicity and surface-density gradients in the stars and gas indicates that our new model, with star formation, chemical enrichment and feedback calculated self-consistently on local disc scales, reproduces some but not all of the trends seen in recent many-galaxy IFU surveys.