论文标题

Cascade EF-GAN:渐进的面部表达式编辑与本地重点

Cascade EF-GAN: Progressive Facial Expression Editing with Local Focuses

论文作者

Wu, Rongliang, Zhang, Gongjie, Lu, Shijian, Chen, Tao

论文摘要

生成对抗网(GAN)的最新进展显示出面部表达编辑的显着改善。但是,当前的方法仍然容易产生伪影和围绕表达密集的区域的模糊,并且经常引入不希望的重叠伪影,同时处理大差距表达转换,例如从愤怒到笑声。为了解决这些局限性,我们提出了级联表达局灶性GAN(CASCADE EF-GAN),这是一个具有局部表达焦点进行渐进的面部表达编辑的新型网络。当地焦点的引入使Cascade EF-GAN能够更好地保留与身份相关的特征以及眼睛,鼻子和嘴巴周围的细节,这进一步有助于减少产生的面部图像中的伪像和模糊。此外,通过将大型面部表达转化分为级联的多个小型级别,这有助于抑制重叠的伪影并产生更现实的编辑,同时在处理大间隙表达转换时,设计了一种创新的级联转化策略。对两个公开面部表达数据集进行的广泛实验表明,我们提出的级联EF-GAN在面部表达编辑方面取得了出色的性能。

Recent advances in Generative Adversarial Nets (GANs) have shown remarkable improvements for facial expression editing. However, current methods are still prone to generate artifacts and blurs around expression-intensive regions, and often introduce undesired overlapping artifacts while handling large-gap expression transformations such as transformation from furious to laughing. To address these limitations, we propose Cascade Expression Focal GAN (Cascade EF-GAN), a novel network that performs progressive facial expression editing with local expression focuses. The introduction of the local focus enables the Cascade EF-GAN to better preserve identity-related features and details around eyes, noses and mouths, which further helps reduce artifacts and blurs within the generated facial images. In addition, an innovative cascade transformation strategy is designed by dividing a large facial expression transformation into multiple small ones in cascade, which helps suppress overlapping artifacts and produce more realistic editing while dealing with large-gap expression transformations. Extensive experiments over two publicly available facial expression datasets show that our proposed Cascade EF-GAN achieves superior performance for facial expression editing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源