论文标题
诊断分类模型的修改指标
Modification Indices for Diagnostic Classification Models
论文作者
论文摘要
诊断分类模型(DCMS)是心理测量模型,用于根据他们对一组测试项目的响应来评估学生对内容域中基本技能的掌握。当前,诊断模型和/或Q-Matrix错误指定是一个已知的问题,具有有限的补救途径。为了解决此问题,本文定义了一种单方面的分数统计量,该统计量是一种计算有效的方法,用于检测分析中选择的特定DCM的Q-Matrix和模型参数。该方法类似于在结构方程建模中广泛使用的修改指标。仿真研究的结果表明,当使用适当的混合物卡方分布时,DCMS的I型修饰指数的变化指数接近名义显着性水平。仿真结果表明,在检测未指定的Q-Matrix时,修改指标非常强大,并且具有足够的能力来检测大型样本中模型参数的遗漏,或者当项目高度歧视时。 DCMS的修改指数应用于分析诊断测试大规模给药的响应数据的应用,这表明了它们如何在诊断模型完善中有用。
Diagnostic classification models (DCMs) are psychometric models for evaluating a student's mastery of the essential skills in a content domain based upon their responses to a set of test items. Currently, diagnostic model and/or Q-matrix misspecification is a known problem with limited avenues for remediation. To address this problem, this paper defines a one-sided score statistic that is a computationally efficient method for detecting under-specification of both the Q-matrix and the model parameters of the particular DCM chosen in the analysis. This method is analogous to the modification indices widely used in structural equation modeling. The results of a simulation study show the Type I error rate of modification indices for DCMs are acceptably close to the nominal significance level when the appropriate mixture chi-squared reference distribution is used. The simulation results indicate that modification indices are very powerful in the detection of an under-specified Q-matrix and have ample power to detect the omission of model parameters in large samples or when the items are highly discriminating. An application of modification indices for DCMs to analysis of response data from a large-scale administration of a diagnostic test demonstrates how they can be useful in diagnostic model refinement.