论文标题
$^{69} $ Zn的核水平密度来自Gamma门控粒子光谱及其对$^{68} $ Zn(n,$γ$)的含义
Nuclear level density of $^{69}$Zn from gamma gated particle spectrum and its implication on $^{68}$Zn(n, $γ$)$^{69}$Zn capture cross-section
论文作者
论文摘要
蒸发的$α$ -spectra与低能离散$γ$ - res ratual nucleus $^{68} $ zn相吻合,在反应$^{64} $ ni($^9 $ be,$ n)$ n)$ n)$ n)$^{68} $ ge ain $ e($ e e e e e e e e e e e e e e gyeve $^{64} $ ni($^9 $ be)中= 30 $ e(^9 $ e(^9 $)核。低能能$γ$的$α$粒子光谱首次用于在E $ \ $ 5-20 MEV的激发能范围内提取中间$^{69} $ Zn核的核水平密度(NLD)。 NLD的斜率是$^{69} $ Zn的激发能量的函数,与在低能量下NLD的RIPL估计值确定的斜率和NLD中的NLD与Neutron Resonance Data相匹配。提取的逆NLD参数(k = a/$ \ widetilde {a} $)已用于确定核级密度参数值$ a $ a in Neutron Emalation Energy $ s_n $ for $^{69} $ Zn。 $^{68} $ Zn(n,$γ$)的总横截面随着中性能量的函数捕获反应,并在反应代码talys中使用派生的$ a(s_n)$进行估计。发现估计的中子捕获横截面与可用的实验数据毫无范围而没有任何归一化。目前的结果表明,实验得出的核水平密度参数可以限制天体物理捕获横截面的统计模型描述,并优化与天体物理反应速率相关的不确定性
Evaporated $α$-spectra have been measured in coincidence with low energy discrete $γ$-rays from residual nucleus $^{68}$Zn populated in the reaction $^{64}$Ni($^9$Be,$α$n)$^{68}$Zn at $E(^9$Be) = 30 MeV producing $^{73}$Ge compound nucleus. Low energy $γ$-gated $α$-particle spectra, for the first time, have been used to extract the nuclear level density (NLD) for the intermediate $^{69}$Zn nucleus in the excitation energy range of E $\approx$ 5-20 MeV. The slope of NLD as a function of excitation energy for $^{69}$Zn matches nicely with the slope determined from RIPL estimates for NLD at low energies and the NLD from neutron resonance data. Extracted inverse NLD parameter (k = A/$\widetilde{a}$) has been used to determine the nuclear level density parameter value $a$ at neutron separation energy $S_n$ for $^{69}$Zn. Total cross-section of $^{68}$Zn(n,$γ$) capture reaction as a function of neutron energy is then estimated employing the derived $a(S_n)$ in the reaction code TALYS. It is found that the estimated neutron capture cross-section agrees well with the available experimental data without any normalization. The present result indicates that experimentally derived nuclear level density parameter can constrain the statistical model description of astrophysical capture cross-section and optimize the uncertainties associated with the astrophysical reaction rate