论文标题
熵界和散射幅度的单位性
Entropy Bound and Unitarity of Scattering Amplitudes
论文作者
论文摘要
我们确定散射幅度的单位性施加了普遍的熵边界。半径为R的自我维持的量子场对象的最大熵等于其表面积,同时进行在量表R处评估的反向运行耦合,这些熵边界的饱和度与最佳触发点在2到N粒子散射amplit上的单位粒子散射amplite的非驱动性饱和的一对一对应关系。这些边界比Bekenstein的界限更为严格,并且在一致的理论中,这三个界限同时饱和。对于所有已知的熵饱和物体,例如孤子,激,鲍恩斯,oscillon,黑洞或简单的古典田地,都是如此。我们将它们集体称为“饱和剂”,并表明,在可恢复的理论中,它们在所有其他方面都表现出色,例如黑洞。最后,有人认为,SU(n)仪表理论中的限制可以理解为熵边界和单位性的直接结果。
We establish that unitarity of scattering amplitudes imposes universal entropy bounds. The maximal entropy of a self-sustained quantum field object of radius R is equal to its surface area and at the same time to the inverse running coupling evaluated at the scale R. The saturation of these entropy bounds is in one-to-one correspondence with the non-perturbative saturation of unitarity by 2-to-N particle scattering amplitudes at the point of optimal truncation. These bounds are more stringent than Bekenstein's bound and in a consistent theory all three get saturated simultaneously. This is true for all known entropy-saturating objects such as solitons, instantons, baryons, oscillons, black holes or simply lumps of classical fields. We refer to these collectively as "saturons" and show that in renormalizable theories they behave in all other respects like black holes. Finally, it is argued that the confinement in SU(N) gauge theory can be understood as a direct consequence of the entropy bounds and unitarity.